Mechanical Engineering
NOTE: See the beginning of Section H for abbreviations, course numbers and coding.
All courses must be passed with a grade of C or better. All pre- and co-requisites are strictly enforced.
L* = Laboratory periods on alternate weeks.
T*= Tutorial periods on alternate weeks.
* = Engineering electives. Not all offered every year. Consult Department as to availability of courses from year to year at web site: http://www.me.unb.ca.
ME1312 | Computer Aided Design | 4 ch (3C 3L) |
---|---|---|
Introduces the technology of 3D parametric geometric modeling to design and model mechanical engineering parts, assemblies and devices. Geometric variables and their interrelationships will be covered by projects involving the design of mechanical components, assemblies and machines to meet functional requirements. Manufacturing requirements including Geometric Dimensioning and Tolerancing. The use of the model for analysis, optimization and simulation will be stressed. Presentation of the model through engineering drawings and pictorial renderings. Animation of mechanisms. A comprehensive commercial CAD program will be utilized. Prerequisite: ENGG 1003. |
ME2003 | Dynamics for Engineers | 4 ch (3C 2L 1T) |
---|---|---|
The dynamic analysis of linear particle systems based on momentum. The analysis of centroids and moments of inertia for rigid bodies. Introduction to the rotation of a rigid body about a fixed axis, motion of a rigid body in a plane. The dynamic analysis of a rigid body with general planar motion using Newton’s second law, work and energy, momentum and angular momentum. Prerequisites: ENGG 1082, MATH 1013. |
ME2111 | Mechanics of Materials I | 3 ch (3C 1T) |
---|---|---|
Basic concepts, uniaxial stress and strain, Hooke’s law, torsion, pure bending, bending design, shear flow, transverse loads, stress and strain transformation, Mohr’s circle, strain measurement, yield criteria. Co-requisite: ME 2003 or APSC 1023. |
ME2122 | Mechanics of Materials II | 3 ch (3C 2T*) |
---|---|---|
Fatigue, thin-wall pressure vessels, strength and deflection of beams, buckling of columns, instability, indeterminate beams, energy methods, Castigliano’s theorem. |
ME2125 | Mechanics of Materials Design Project | 1 ch (2L*) (W) (EL) |
---|---|---|
Analysis of the strength of a mechanical device. Shapes and materials will be modified to meet deflection and stress limits. Written reports will document choices made and assessment of design. Group oral reports. Co-requisite: ME 2122. |
ME2143 | Kinematics and Dynamics of Machines | 3 ch (3C 2T*) |
---|---|---|
Fundamental concepts of linkages; displacement, velocity and acceleration analysis using graphical and analytical methods. Static and dynamic force analysis of linkages. Design of cams, gears and gear trains; including ordinary and planetary gear trains. Balancing rotating masses. Simple gyroscopic effects. Prerequisite: ME 2003 or APSC 1023. Recommended: CS 1003 or other introductory programming course. |
ME2145 | Kinematics and Dynamics Design Project | 1 ch (2L*) (W) (EL) |
---|---|---|
Student groups to design and build working model of planar linkage mechanism, based on a mechanical application. Cooperation and project management skills. Written reports to document choices made; evaluation of working model performance; and position, velocity, acceleration and force analyses. Group oral reports. Prerequisite: ME 2003, APSC 1023. Co-requisite: ME 2143. Recommended co-requisite: ME 2352 or ME 3352. |
ME2352 | Design Optimization | 4 ch (3C 2L) |
---|---|---|
Optimization of any design is essential either to remain competitive or to improve product efficiency and quality. Several optimization methods are presented through a variety of mechanical design and industrial engineering problems. Topics include: single and multi-variable unconstrained optimization, linear programming, transportation, assignment and network problems. Other topics such as constrained and global optimization are introduced. |
ME2413 | Thermodynamics | 3 ch (3C 1T) |
---|---|---|
Properties of a pure substance -- work and heat. First law and applications in non-flow and flow processes. Second law and reversibility: entropy, applications of the second law to non-flow and flow processes. Analysis of thermodynamic cycles: Otto and Diesel cycles. Thermodynamic relationships. Co-requisite: MATH 2513. |
ME2415 | Thermodynamics Laboratory | 1 ch (3L*) (W) |
---|---|---|
Laboratory experiments and measurements related to Thermodynamics 1. Laboratory reports and readings are assigned. Co-requisite: ME 3413 or ME 2413. |
ME3221 | Manufacturing Engineering I | 3 ch (3C 1T*) |
---|---|---|
Prerequisites: CHE 2501, CHE 2506, and ME 2111. |
ME3222 | Manufacturing Engineering I with Laboratory | 4 ch (3C 2L* 1T*) |
---|---|---|
Introduction to manufacturing processes; design criteria for material and process selections. Fundamentals of mechanical behaviour of materials, particularly the yield behaviour under triaxal stresses. Crystal structures; failure modes and the effect of various factors; manufacturing properties of metals. Surface structures and properties; service texture and roughness; friction, wear, and basic lubrication surface treatment design. Metal casting processes and equipment; casting design; heat treatment design. The laboratory exercises are: heat treatment, precipitation stregthening, Jominy centrifugal testing casting and impact toughness test. |
ME3232 | Engineering Economics | 3 ch (3C) |
---|---|---|
Application of engineering economic analysis to mechanical and industrial engineering systems. Major emphasis will be given to decision-making based on the comparison of worth of alternative courses of action with respect to their costs. Topics include: discounted cash flow mechanics, economic analyses, management of money, economic decisions. Restricted to students with at least 60 ch. |
ME3341 | Machine Design | 3 ch (3C 2T*) |
---|---|---|
Review of design process. Safety, environmental and sustainability issues of machine design. Design of shafts, power screws, threaded fasteners. Tolerances and fits. Contact stresses. Lubrication, journal bearings and rolling element bearings. Gearing design: spur, helical, bevel and worm gearing. Critical speeds of rotating systems. Couplings, seals. Prerequisites: ME 2143 and ME 2122. Recommended: (STAT 2593 or STAT 2264). |
ME3345 | Machine Design Project | 2 ch (4L*) (W) (EL) |
---|---|---|
Applies many topics of first 2 years in mechanical engineering. Practical aspects of detailed machine design project in team environment. Student groups to design, build and test a mechanical device for a client. Written reports will document choices made and assessment of design. Group oral reports. Co-requisite: ME 3341. |
ME3433 | Heat Transfer I | 3 ch (3C 1T) |
---|---|---|
Conduction: One-dimensional steady conduction and applications. Thermal properties. The differential equations of conduction; analytic and numerical solutions to two-dimensional problems and applications. Unsteady conduction lumped and differential approaches with applications. Temperature measurement. Convection: Dynamic similarity and dimensional analysis; boundary layer theory and applications to flow over heated/cooled surfaces; laminar and turbulent flow-free convection. Heat transfer with change of phase. Radiation: the laws of black body radiation; Kirchhoff's law and gray body radiation. Combined modes of heat transfer: heat exchanger design; augmentation of heat transfer; fins and thermocouples. Environmental heat exchange. Equivalent to CHE 3304. |
ME3435 | Heat Transfer I Laboratory | 1 ch (3L*) (W) |
---|---|---|
Laboratory experiments and measurements related to Heat Transfer I. Laboratory reports and readings are assigned. Prerequisites: (ME 2415 or ME 3415) and ME 3515) or CHE 2412. |
ME3511 | Fluid Mechanics | 3 ch (3C) |
---|---|---|
The principles of fluid mechanics are introduced and methods are presented for the analysis of fluid motion in practical engineering problems. Specific topics include: fluid statics; integral balances of mass, momentum, angular momentum and energy; dimensional analysis; and liquid flow in piping networks with pumps and turbines. Pressure and flow measurement and experimental uncertainty. Prerequisite: ME 2003 or APSC 1023. Co-requisite: MATH 2513. |
ME3515 | Fluid Mechanics Laboratory | 1 ch (3L*) (W) |
---|---|---|
Laboratory experiments and measurements related to Fluid Mechanics I. Laboratory reports and readings are assigned. Co-requisite: ME 3511. |
ME3522 | Applied Fluid Mechanics | 3 ch (3C 1T) |
---|---|---|
The performance and selection of hydraulic pumps and turbines, boundary layer theory and introduction to the Navier-Stokes equations, the lift and drag on immersed objects, and compressible flow in piping and nozzles. |
ME3524 | Fluid Systems and Design | 2 ch (1C 1L) (W) (EL) |
---|---|---|
Students work in groups on design projects that apply fluid mechanics. Examples include: pump and turbine selection; piping for conveyance of gases and liquids; gas and steam nozzles; lift and drag on air and water craft, land vehicles and projectiles; fluid forces on solid structures. Co-requisite: ME 3522. |
ME3611 | System Dynamics | 3 ch (3C 1T) |
---|---|---|
Prerequisite: (ME 2003 or APSC 1023), (CS 1003 or CS 1073), ECE 1813, MATH 3503. Recommended: ECE 2711. |
ME3612 | Mechanical Vibration | 3 ch (3C) |
---|---|---|
Prerequisites: ME 3611 and MATH 3503. |
ME3613 | System Dynamics with Laboratory | 4 ch (3C 1L* 1T) |
---|---|---|
System concepts. Development and analysis of differential equation models for mechanical, electrical, thermal, and fluid systems, including some sensors. Systems are primarily analyzed using Laplace transforms and computer simulation methods. Analysis concepts cover first, second, and higher order differential equations, transient characteristics, transfer functions, stability, dominance, and frequency response. Properties of systems: time constant, natural and damped frequency, damping ratio. Prerequisites: (ME 2003 or APSC 1023), (CS 1003 or CS 1073), ECE 1813, MATH 3503. Recommended: ECE 2701 or ECE 2711. |
ME3622 | Automatic Controls I | 3 ch (3C 1T) |
---|---|---|
Prerequisite: ME 3611. |
ME3623 | Automatic Controls I with Laboratory | 4 ch (3C 1L* 1T) |
---|---|---|
Philosophy of automatic control; open loop, sensitivity, components of a control loop; closed loop control, error analysis. Design of P, I, PI, and PID-controllers based on closed-loop specifications. Stability criteria: Routh-Hurwitz. Lead/lag controller design using Root Locus and Bode diagrams. Sensor frequency response to classical inputs. Application of electronics and sensors to control systems based on frequency response. Basic digital analysis including digitization, sampling, aliasing, A/D and D/A devices, and phase loss due to time delays. Prerequisite: ME 3613. |
ME3701 | Mechanical Engineering Laboratory I | 2 ch (3C* 3L*) (W) (EL) |
---|---|---|
Prerequisites: ME 2413, ME 2122. Co-requisites: ME 3611, ME 3221. |
ME3702 | Mechanical Engineering Laboratory II | 2 ch (3C* 3L*) (W) (EL) |
---|---|---|
Prerequisites: ME 3701, ME 3511. Co-requisites: ME 3433, ME 3622, ME 3612. |
ME4281 | Manufacturing Engineering II | 3 ch (3C) |
---|---|---|
Prerequisites: (ME 2121 or ME 2122) and ME 3221. |
ME4283 | Manufacturing Engineering II with Laboratory | 4 ch (3C 3L*) |
---|---|---|
Principles and physical phenomena of the basic manufacturing processes. A review of the attributes of manufactured products will precede lectures on forging, sheet metal working, machining and joining. Material behaviour during manufacturing. Processing of polymers, particulate metals and ceramics is presented. Design of manufacturing systems and the design of components based on criteria and constraints of manufacturing systems and equipment is included in each topic area of the course. A combination of lectures and experimental labs round out the course content. Prerequisites: (ME 2121 or ME 2122) and (ME 2222 or ME 3222). |
ME4421 | Applied Thermodynamics | 3 ch (3C 1T) |
---|---|---|
Air standard cycles: Open and closed gas turbine cycles with reheat, regenerative heat exchange and pressure drop. Steam power plants: analysis of vapor power systems, Rankine cycle, reheat and regenerative cycles; binary and nuclear plant cycles, power plant performance parameters, exergy accounting of a vapor power plant. Basic analysis of combined cycle power plants. Refrigeration systems. Properties of gas and vapor mixtures, psychometric principles, air-conditioning processes. Combustion: fuels, chemical equations, experimental analysis and the products of combustion. Prerequisites: (ME 2413 or ME 3413). Recommended: ME 3433, ME 3522, ME 3524. |
ME4424 | Sustainable Energy Systems Design | 2 ch (1C 2L) (W) (EL) |
---|---|---|
Project oriented course dealing with the design of energy systems that meet regional and global energy needs in the 21st century in a sustainable manner. A combination of conventional and renewable energy technologies will be presented, including topics on resources, extraction, conversion, and end-use. The impact of engineering design on the environment, society, and sustainable development is discussed. Projects will focus on the improved design of both conventional and renewable energy systems with the aim of improving overall efficiency while minimizing the environmental and social impact. Prerequisites: Finish two out of these three sets (ME 2413 or ME 3413), (ME 3433), (ME 3522 and ME 3524). Co-requisite: ME 4421. |
ME4613 | Mechanical Vibration with Laboratory | 4 ch (3C 3L*) |
---|---|---|
Review of single degree-of-freedom vibration: free response, damping, forced response. Multiple-degree-of-freedom systems. Design for vibration suppression. Distributed parameter systems; wave propagation. Vibration testing and experimental modal analysis including transducers and FFT analysis. |
ME4633 | Vibration of Continuous Systems | 3 ch (3C) |
---|---|---|
The free and forced vibration solutions for distributed parameter system models are covered in detail. Specific system models considered include strings/cables, rods, beams, plates, membranes and shells. Prerequisite: ME 4613. |
ME4673 | Introduction to Mechatronics | 4 ch (3C 2L) (EL) |
---|---|---|
Mechatronics is an integrated approach to mechanical, electronic and computer engineering for the design of “smart” products and “intelligent” manufacturing systems. Fundamentals of mechatronics design, with emphasis on product design and fabrication. Examples of mechanical systems utilizing sensors and actuator technologies, including use of signal conditioning circuits such as filters, amplifiers and analog-to-digital converters. Software design and implementation for process monitoring and logic control. Laboratory experiments give hands-on experience with components and equipment used in the design of mechatronic products. Project to design and fabricate a mechatronic system. Prerequisites: ECE 2213 or (ECE 2214 and ECE 2215), ECE 3111 , ME 3341, and ME 3613. |
ME4683 | Mechatronics Applications | 4 ch (3C 2L) (EL) |
---|---|---|
Concepts in automating processes. System specifications, components identification/selection, programming and interfacing for system automation and control. Project involving use of PLC or microprocessor technology in a mechatronics system. Prerequisite: ME 4673. |
ME4701 | Mechanical Engineering Laboratory III | 2 ch (3C* 3L*) (W) (EL) |
---|---|---|
Prerequisite: ME 3702. Co-requisite: ME 4281. |
ME4703* | Mechanical Engineering Measurements | 4 ch (3C 2L) (EL) |
---|---|---|
Discusses a variety of measurement techniques used in Mechanical Engineering. Topics include analog and digital measurement systems, frequency response, calibration and assessment of uncertainty. The focus is on the analysis and design of measuring instruments. Laboratory exercises include measures of time and rate, displacements, stress and strain, force, pressure, flow, temperature, and vibrations. Prerequisites: ME 2111 and ME 3613 or permission from the instructor. |
ME4860 | Senior Design Project | 8 ch (1C 2T 4L) (W) (EL) |
---|---|---|
A mechanical engineering design is developed and documented in the form of a technical report. Students normally work in approved teams. Industrial projects are developed in cooperation with industry and may require some period of time on site. University-based projects are developed in cooperation with university faculty. The first stage of this process involves definition of the project topic, background studies, and development of a conceptual design. An oral examination is conducted towards the end of the first term, and a written preliminary report is submitted. In the second term, a detailed design is prepared, the project is completed and orally examined, and a final report is submitted. One of the laboratory weekly hours is designated for a scheduled meeting with project advisor(s). Workshops involve practice exercises, relevant to student projects, on: problem definition and formulation, project planning, teamwork, information and communication; conceptual, parametric and configuration designs; and professional, environmental, social, human factors, and safety aspects of design. Restricted to students who have completed at least 110 ch in their program. |
ME4861 | Mechanical Health and Safety | 1 ch (1C) (W) |
---|---|---|
Accidents, their effects and causation. Mechanical hazards and machine safeguarding. Temperature extremes. Pressure hazards. Fire hazards, Noise and vibration hazards. Computers, automation and robots. Ethics and safety. Co-requisite: ME 4860 or ENGG 4025 or TME 5025. |
ME5113 | Advanced Solid Mechanics of Composites | 4 ch (3C) 2L* |
---|---|---|
Introduction to stress analysis that deals with anisotropy of stress and general equations of the theory and elasticity. The elastic equilibrium and boundary value problem formulations are considered. Introduction to the modelling of inhomogeneous composite solids, the effective moduli theory and the elasticity of laminated and fiber enforced composite, as well as nanostructured composite theories are covered. |
ME5122* | Solid State Phenomena | 3 ch (3C) |
---|---|---|
Prerequisites: CHE 2501, ME 3222 |
ME5143* | Robot Kinematics | 4 ch (3C 2L*2T*) |
---|---|---|
Structure and specification of robotic manipulators. Homogeneous transformations and link descriptions. Manipulator forward and inverse displacement solutions. Jacobians in the velocity and static force domains. Singular configurations and workspace analysis. An introduction to trajectory planning and manipulator dynamics. Lab experiments explore several robotic manipulators. Prerequisites: MATH 2513 and ME 2143. NOTE: Credit will not be granted for both ME 5143 and ME 4173. |
ME5173* | Advanced Kinematics of Manipulators | 4 ch (3C 3L*) |
---|---|---|
Various methods for solving the forward and inverse displacement problems are described. Particular emphasis is made on the use of screw theory for the derivation of the Jacobian matrix. The selection of alternate frames of reference for describing the Jacobian are also discussed. Methods used in the solution of the inverse displacement problem and the inverse and forward velocity problems for kinematically redundant manipulators are discussed. Prerequisite: ME 4173 or ME 5143. Recommended co-requisite: ME 2352. |
ME5183* | Industrial Robotics and Automation | 4 ch (3C 2L*) |
---|---|---|
Brief introduction to robot kinematics including forward and inverse displacement and velocity solutions. An introduction to trajectory planning. Description of common uses of robotics in the manufacturing industry. Description and differences between soft and hard automation particularly in material handling systems. Fundamentals of sensors, actuators and controllers. Examples of automated machinery conveyor systems, feeder systems and packaging systems. Lab introduces different components of a flexible manufacturing systems. Graduate students enrolling in this course must submit an additional project in order to receive credit for this course. Prerequisites: CS 1003, MATH 1503, ME 2143 and (ECE 2701 or ECE 2711). |
ME5223* | Finite Element Analysis | 3 ch (3C) |
---|---|---|
Introduction to the basic concepts of finite element analysis (FEA) including domain discretization, element types, system matrix assembly, and numerical solution techniques. Application of FEA to solve static, dynamic and harmonic problems of linearly elastic solid bodies and heat transfer will be covered in detail. Graduate students enrolling in this course must submit an additional project in order to receive credit for this course. Prerequisites: ME 2122 and ME 3613 and MATH 3503 and (CS 3113 or CE 3933 or CHE 2418). |
ME5233* | Metal Forming Analysis | 3 ch (3C) |
---|---|---|
Mechanical and metallurgical analysis of different metal forming processes such as forging, rolling, extrusion, deep drawing, wire drawing along with sheet metal forming analysis and forming limit diagram calculation. |
ME5243* | Machining Theory and Practice | 4 ch (3C 3L) |
---|---|---|
The fundamentals of metal cutting theory will be examined with particular emphasis on understanding cutting forces, stresses, strains, strain rates, and temperatures during the cutting process. Tribological issues, tool wear, and tool life will also be presented. Tools typically available to the manufacturing engineer such as Computer-Aided Design (CAD), Computer Aided Manufacturing (CAM), and Computer Numerical Control (CNC) Programming will compromise a significant portion of the course. Using the machine shop in the Mechanical Engineering Department, students will extend classroom concepts to practical scenarios and situations on the machine shop floor. Prerequisite: (ME 2222 or ME 3222). Co-requisite: ME 4283. |
ME5253* | Codified Design and Failure Analysis | 4 ch (3C 3T*) |
---|---|---|
This senior level course examines the application of mechanical design to engineering practice. In particular, the course will examine codified design of steel structures and the analysis of common failures that occur in service. Prerequisite: ME 3341. Co-requisite: ME 4613. |
ME5283* | Micro/Nano Manufacturing | 3 ch (3C) |
---|---|---|
Review of principles and practices of micro/nano fabrication technologies with research and industrial perspectives. Introduction to micro/nano fabrication and its applications in MEMS/NEMS, renewable energy and biomaterials; materials selection; silicon processing; lithography process; thin film fabrication; advanced lithography process; characterization and micro/nano measurement techniques; atomic force microscopy and its applications. |
ME5353* | Fracture Mechanics | 3 ch (3C) |
---|---|---|
Principles of fractures mechanics and fracture analysis of engineering structures. Plane elasticity and mathematical methods to determine the elastic stress, strain and displacement fields. Fracture criteria and their limitations. Elastic-plastic fracture mechanics, J integral and COD. Fatigue fracture and S-N curve. Prerequisite: ME 3341. |
ME5493* | Internal Combustion Engines | 4 ch (3C 3L*) |
---|---|---|
The thermodynamics of internal combustion engines is introduced and applied to reciprocating spark ignition and compression ignition engines. The performance of each engine type is studied experimentally. The mechanical design of reciprocating engines is also examined. Prerequisite: ME 3423 or ME 4421. |
ME5503* | Application of Computational Fluid Dynamics to Industrial Processes | 3 ch (3C) |
---|---|---|
General CFD topics such as grid topologies, discretization methods and errors, pressure-velocity coupling, solution methods for non-linear equations, and popular solution schemes such as the SIMPLE based methods. Introduction of extensions to core CFD techniques for a wide range of industrial applications, including turbulence models, multiphase flow models for problems in cavitation, boiling/condensation, and solidification/melting. Role of properties in CFD models, as related to non-Newtonian fluids, real and ideal properties for compressible flows, and combustion applications. |
ME5534* | Experimental Methods in Fluid Dynamics | 4 ch (3C 3L*) |
---|---|---|
This course will cover topics including the methodology, measurement uncertainty, and signal processing associated with fluid dynamics measurements. Various means of measuring pressure, velocity and visualizing flow will also be discussed. Co-requisite: ME 3522. |
ME5553* | Ocean Wave Energy Conversion | 4 ch (3C 2L) |
---|---|---|
Introduction to the fundamental concepts of ocean wave energy conversion. Topics include: ocean wave mechanics, the wave energy resource, basic wave energy conversion techniques, analytical and experimental modelling of wave energy converter, power take-off systems, and environmental impact assessment. |
ME5578* | Low Speed Aerodynamics | 4 ch (3C 1L) |
---|---|---|
Prerequisite: ME 3522 |
ME5588* | High Speed Aerodynamics | 3 ch (3C) |
---|---|---|
The principles of thermodynamics and fluid mechanics will be applied to describe external flow of compressible gases. Applications include two dimensional aerofoils, slender wings, aircraft and ballistics. Prerequisite: ME 3522. |
ME5622* | Human Factors Engineering | 3 ch (2C 3L) |
---|---|---|
An interdisciplinary study of the interaction of humans and their workspace. Physiological principles of work and energy. Anthropometry. Biomechanics. The ergonomics of workspace and job design. Fatigue. Work/rest schedules and nutrition. The physiological and psychological effects of human noise, vibration, lighting, vision, and the workspace environment. Lab periods include seminars and practical design exercise applying human factors and ergonomic theory to workspace problems. Prerequisite: Restricted to students with at least 65 credit hours. |
ME5643* | Automatic Controls II | 4 ch (3C 2L*) |
---|---|---|
The first half of the course is an introduction to digital control. Emphasis is placed on understanding the relationships between analog and digital techniques. The second half concentrates on developing the basic mathematical framework for state space control. Several powerful abstract mathematical tools such as the projection theorem are introduced. |
ME5653* | Predictive Control and Intelligent Sensors | 4 ch (3C 3L*) (EL) |
---|---|---|
Study on the design and practical implementation of model predictive controllers and intelligent sensors for industrial type processes. Topics to be studied include sensor selection and instrumentation, signal processing and conditioning, process modelling and identification, computer interfacing, predictive control, optimization techniques, algorithm design and intelligent sensor modelling. The course is project oriented and includes the use of Matlab and LabWindows CVI software. |
ME5673 | Acoustics | 3 ch (3C) (W) |
---|---|---|
ME5713* | Nondestructive Testing | 4 ch (3C 3L*) |
---|---|---|
Principles of nondestructive evaluation, acoustic emission techniques, ultrasonics, microwave methods, electromagnetic probes, penetrating radiation. Prerequisites: A first year course in Physics or APSC 1023 or ENGG 1082. Restricted to students with at least 100 credit hours. |
ME5813* | Special Topics in Mechanical Engineering | 1 ch |
---|---|---|
Provides selected students an opportunity to either study concepts of a newly developed course or complete an independent project in association with an undergraduate course within the department. Permission of the instructor of the associated course is required. |
ME5833* | Special Topics in Mechanical Engineering | 3 ch |
---|---|---|
Provides selected students an opportunity to either study concepts of a newly developed course or complete an independent or group-based course of study within the department. Permission of the instructor of an associated course is required. |
ME5913* | Biomechanics I | 4 ch (3C 2S) |
---|---|---|
A number of topics in biomechanics are examined. Of particular interest is the mechanics of joints, and relation of the internal mechanics of joints to externally applied loads. Analysis techniques are introduced to facilitate analysis of the problems addressed in the course. Prerequisite: 100 credit hours. |
ME5933* | Industrial Ecology and Sustainable Engineering | 3 ch (3C) |
---|---|---|
The goal is to develop awareness and knowledge on forward-looking thinking of interaction of technology with human induced transformation of materials and energy from the perspectives of environment and sustainability. Topics include: humanity and technology; concept of sustainability; key questions of industrial ecology and sustainable engineering; status of resources; technology and risk assessment; introduction to life cycle assessment (LCA); LCA impact assessment and interpretation; streamlining the LCA process. Prerequisite: Available to all students across engineering disciplines who have completed at least 100 credit hours in their engineering programme. |
ME5953* | Embedded Flight Control Systems | 4 ch (3C 3L) (EL) |
---|---|---|
Prerequisites: ME 3522, ME 3623 |