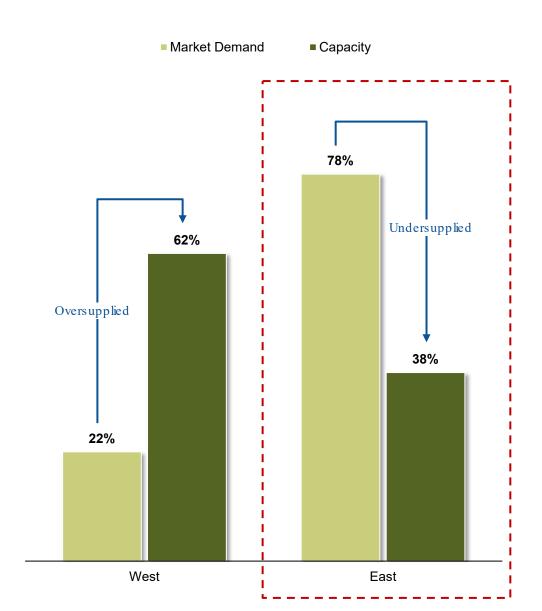


Mass Timber Market Dynamics

Demand / Supply Gap in Mass Timber

 Demand growth in eastern markets is expected to rapidly outpace mass timber material supply capacity

Design Inefficiency in North American Mass Timber Production


 Existing mass timber manufacturers in North America are not designed to efficiently supply components for large buildings (i.e., large glulam columns and beams)

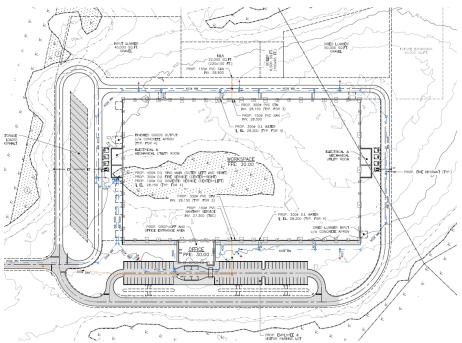
Long Production Lead Times

- Mass timber projects have discouraging lead times +12 months
- MTC's goal is to fill this market demand and reduce lead times

Partnership for massive growth

- Many Canadian projects are currently supplied from European mass timber companies
- MTC can competitively service 90 million people within a 1,500 km radius (>50% within urban centres), reducing freight costs

ry	of Aver	age S	pecific (Gravity a	nd Moisture	Content by	y Mill and	Nominal	Cross Secti	on


•	ago opcomo o	ravity and morotare	contone by min and	Homman Groce God	
	Nominal Size	Average Specific Gravity		_	
	2x 4	0.46	14%	14%	52%
	2x 6	0.43	10%	9%	50%
	2x 8	0.40	8%	10%	45%
	2x 4	0.42	15%	18%	40%
	2x 6	0.43	23%	13%	48%
	2x8	0.45	15%	10%	52%
	2x 4	0.43	12%	12%	41%
	2x 6	0.45	10%	9%	37%
	2x 8	0.42	8%	12%	36%
	All Sizes	0.43	14%	12%	52%

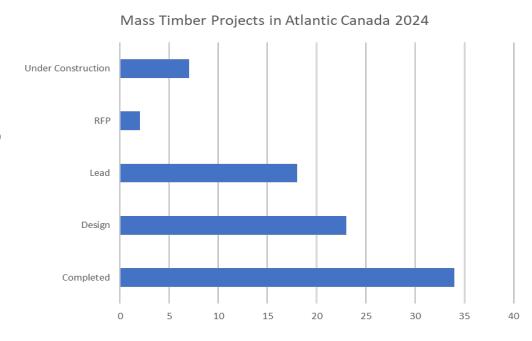
Known Specific Gravity of Selected Spruce Species

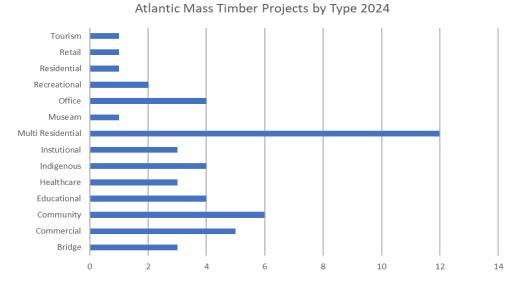
		Specific
Common Name	Scientific Name	Gravity
Black Spruce	Picea mariana	0.38
Red Spruce	Picea Rubens	0.38
White Spruce	Picea Glauca	0.37

Mass Timber Company – Benefit to Nova Scotia

Infrastructure perspective:

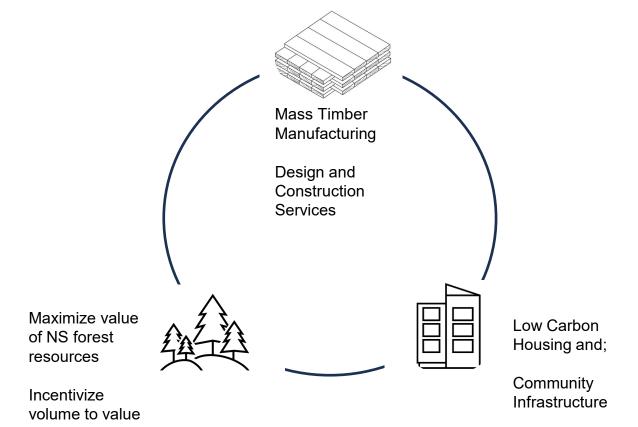
- Provides 2.5M ft² of construction annually (all markets)
- Increases infrastructure capacity ~ 4,000 5,000 units /year | 8,200 is target
- Expedited construction due to prefabrication heads in beds faster (25-30% schedule efficiency)
- 40% less carbon than concrete & code approved for 12 storey's multi residential as well as school and healthcare.
- Projected that first 3 years of production will supply ONLY Atlantic Canadian demand.


Economic Perspective \$215M investment:


- 120+ employees = \$16.5M in Salaries
- EBIDTA \$54M / year 80% will be return to local economy
- Nova Scotia would be a world leader in value added wood product manufacturing and mass timber construction.
- Post secondary relationships are mature and will unlock new education streams and education differentiation

Project Pipeline

- Scale of construction: Nova Scotia Market Has capacity for 5,200 housing units / year | province needs 8,200 / year to meet 2035 growth targets.
- Housing: HRM has the 5th most tower cranes in Canada next to Toronto, Vancouver, Calgary and Montreal.
- Workforce Demand: The construction industry requires 10,600 new workers by 2033 to meet housing needs.
- Retirement Impact: 16% of current construction workers are projected to retire by 2027, further straining workforce capacity.

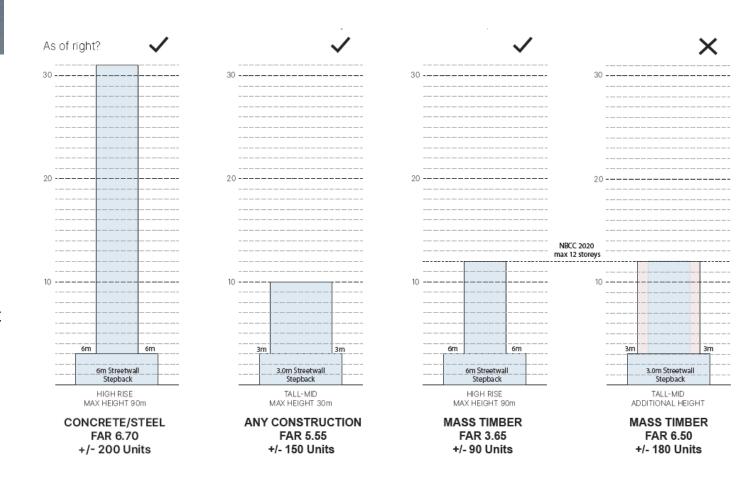


Mass Timber Company – Benefit to Nova Scotia

Mass Timber Provides a True Circular Economic Opportunity

Insulation from USA

- True circular economic solution to provide infrastructure capacity, keeping money, jobs, knowledge and innovation within the province
- Stabilizing the Nova Scotia sawmilling industry add value and supply new markets, stabilizing commodity pricing and market diversification
- Finished wood products are less likely to attract tariffs
- 75% of softwood lumber exported to USA from Atlantic Canada


First nations

- Unlock wood supply, empowering new economic development in communities
- Community housing and infrastructure projects can be supplied, manufactured and installed by MTC - majority first nation owned business.

HRM Housing Initiative

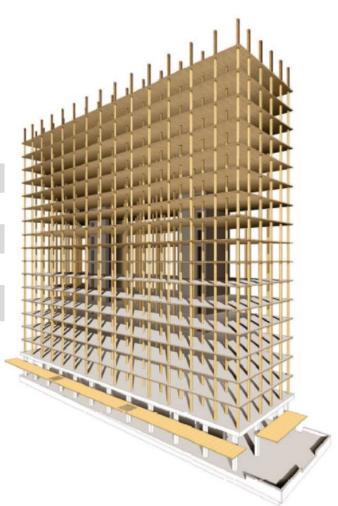
Mass Timber Proposed Land Use Bylaw Changes

- Mass Timber Bonus Density Initiative proposed for Halifax Centre Plan
- 12-storey mass timber buildings now permitted under the provincial building code (effective April 1st)
- Bonus density incentive encourages developers to choose mass timber over traditional materials
- Modeled after Vancouver & Toronto, aiming to cut carbon footprint & speed up construction
- Actively championed by the Mayor of Halifax, architects, and developers
- Focused on sustainability and strengthening the local economy

^{*}This amendment will initiate a 12 storey mass timber project in Dartmouth, NS

BUSINESS CASE FOR TALL WOOD

PROPOSED TALL WOOD RESIDENTAL TOWER


- The Reveal -

Cost Results

Premium for Mass Timber	175,000 ft2	\$5.30 / ft2	\$927,500
Schedule Savings	-45 weeks	\$55,000/week	\$2,475,000

Total: - \$1,547,500

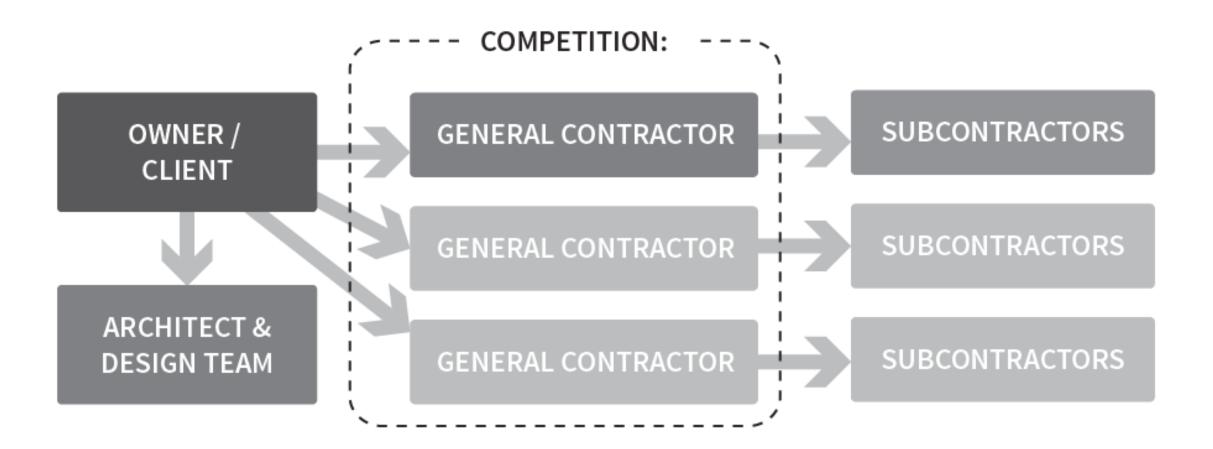
- Formwork based on \$18/sf
- Rebar costs also increasing

MASS TIMBER FUNDAMENTALS

Design Construction TIME MASS TIMBER SCHEDULE Design & Pre-Construction Construction TIME

CONVENTIONAL SCHEDULE

*Cost and time efficiency's are further realized when a team is awarded based on experience and partnership dynamics. If the team is repeated for bundled projects, further efficiencies are inevitable.


The new Affordability is Cost and Schedule Certainty

Contract Delivery Models

Construction Management vs. Hard Bid

Hard Bid

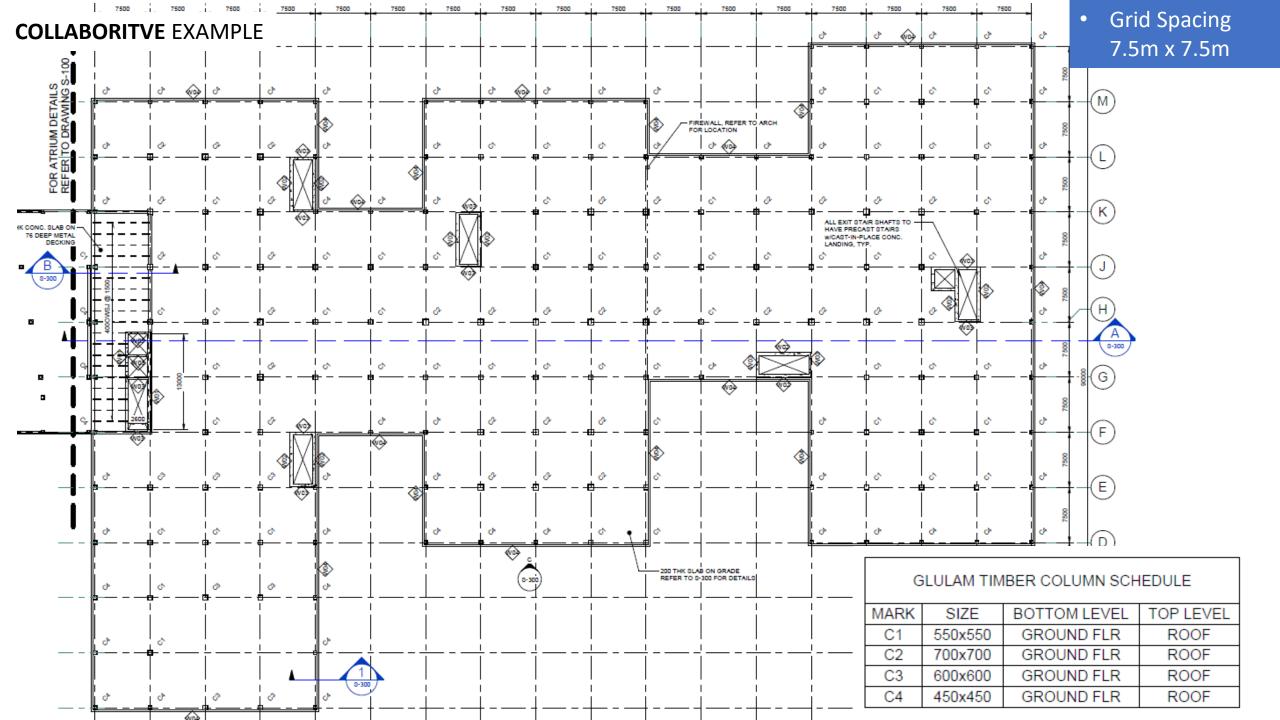
Hard Bid Reality

Hard Bid & Mass Timber

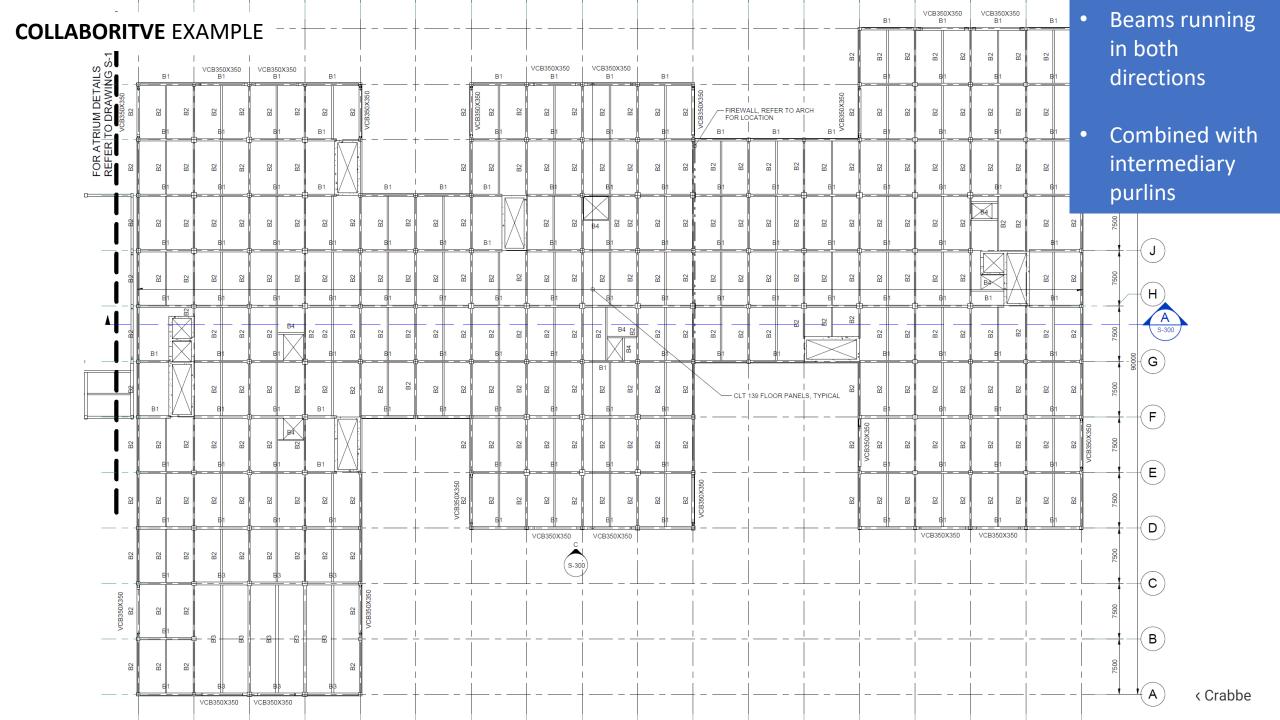
CONVENTIONAL BUILDINGS (ie. Steel and Concrete):

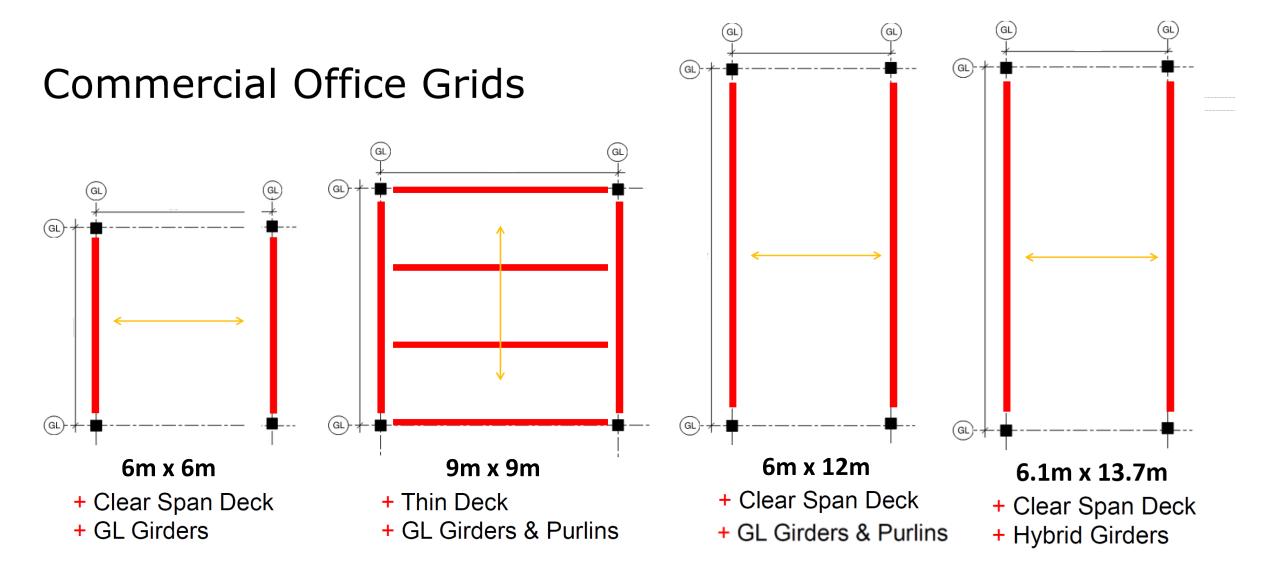
- Optimize functionality/programming first client driven & often not aware of constructability constraints
- Recycling previous designs (ie. 30'x30' not conducive to mass timber)
- Design objectives are not focused on exposing the structure
- M&E systems are covered via. drop ceilings and less effort is required (ie. 30-40% of total build cost)
- Contingencies are blindly thrown at project innovations (Mass timber bids, M&E systems) because of unknowns and lack of mass timber supplier engagement and GC experience

PROJECT DELIVERY (ie. LUMP SUM) & CONVENTIONAL DESIGN & ESTIMATING METHODS FEED PERCEPTION OF MASS TIMBER COST PREMIUMS


Why Collaboration is Critical During Design for Mass Timber

- Mass timber is a prefabricated system not a commodity construction solution
 - + Design Effort
 - Construction schedule
 - Margin for error on site
- Pre-construction Resource heavy maximizing creativity of the team
- Glulam and CLT product options differ based on region and mass timber manufacturing capability.
- Mass timber structural grid needs to be evaluated parallel to early programming exercises.
- Engage AHJ!


Design for Manufacturing and Assembly (DfMA approach)


Design according to manufacturing and supply chain constraints

	North American Mass Timber Manufacturing Capabilites Maximum CLT Maximum Glulam											
Nortr	ı American i	viass	limber Manut	I I	∕laximun	1 CLI	IVIaxii	num Git	ılam			
	MT Panel		Panel Capacity Glulam	n Capacity PRG 320		CoC			Thickness	Width	Depth	
Company	Start Date CLT	GLT	(m3) (m3)	Certification	Species Used	Certification	Width (ft)	Length (ft)	(inches)	(inches)	(inches)	Length (ft)2
Mercer***	2020 Y	N	185,000	0 PFS TECO	SPF, DF	SFI, FSC, PEFC	12	. 60) 12	N/A	N/A	N/A
SmartLam NA, MT	2012 Y	N	75000	0 APA	SPF-S, HF	SFI, FSC	10	53	3 12	N/A	N/A	N/A
Structurlam, AR	2021 Y	Υ	75000	31,000 APA	SYP	FSC	12	. 60) 12	20	43.3	3 65
MTC, NS	2025 Y	Υ	70,000	30,000 WRD, APA	SPF	FSC SFI CSA	11.5	60) 12	23	80	0 60
Sterling****	2022 Y	X	59,500	0 PFS TECO	SYP	Unknown	8	18	9.6	N/A	N/A	N/A
Sterling****	2022 Y	X	59,500	0 PFS TECO	SYP	Unknown	8	18	9.6	N/A	N/A	N/A
Nordic	2011 Y	Υ	50,000	31,000 APA	SPF	FSC, CEAF	8.8	64	12	23.75	96	5 80
SmartLam NA, AL	2018 Y	Υ	50,000	19,000 APA	SYP	SFI, FSC	8	52	2 12.4	12	36	5 60
Element5, ON	2020 Y	Υ	45,000	5,000 APA	SPF	FSC	11.5	52.5	5 15	TBD	TBD) TBD
Structurlam, BC	2011 Y	Υ	45000	19,000 APA	SPF, DF	FSC	10	40) 12	20	96	
StructureCraft	2018 X	N	30,000	0 APA	SPF, DF, HF, SS	s, FSC, PEFC	12	. 60) 12	N/A	N/A	N/A
Freres	2017 X	X	30,000	0 APA	DF	Unknown	11.8	48	3 12	N/A	N/A	N/A
Kalesnikoff	2020 Y	Υ	30,000	13,000 APA	DF, HF, SPF	FSC, PEFC	11.5	60	15.2	36	96	5 60
DR Johnson	2015 Y	Υ	30000	20,000 APA	DF	FSC	10	41.5	9.6	20	108	3 145
Vaagen	2020 Y	Υ	30,000	6,000 APA	DF, SPF	SFI, PEFC	4	60	9.7	12	48	3 60
Element5 QC**	2015 Y	Υ	10000	0 APA	SPF	FSC	9.5	35.5	16	N/A	N/A	A N/A
Western Archrib	N/A X	Υ	0	10,000 APA	DF, HF, SPF	FSC	N/A	N/A	N/A	25	0.25	, 7
Western Archrib	X	Y	0	10,000 APA	DF, HF, SPF	FSC	N/A	N/A	N/A	25	0.25	, 7,

6m x 12m Programming Check

COLLABORITVE EXAMPLE

Footing Sizing Analysis

Beam	Trib Width	L [m]	Beam s		wf	fb	Kzbg	Mf	Mr1	URb	fv	Vf	Vr
Designation	[m]		b [mm]	d [mm]	[kN/m]	[MPa]		[kN.m]	[kN.m]	Mf/Mr	[MPa]	[kN]	[kN]
B1	6	6.0	265	608	68.55	28.2	0.971	308	402	0.77	2.50	209	242
O Column Sch	edule: C2 - 700	x 700										qr=200	kPa (SLS)
Proposed Iulam Column	Level	b (mm)	d (mm)	Pry (kN)	Pf (kN)	UR (Pf/Pr)		Footing	Footing b1 (mm)	Footing b2 (mm)	t (mm)	qs (kPa)	UR qs/qr
H/8	3	457	489	2682	1134	0.42		H/8	3000	3000	800	161	0.81
nterior, under	2	457	489	2796	1546	0.55							
penthouse)	Ground Floor	457	489	2778	1957	0.70							
D Column Sch	edule: C1 - 550	x 550										qr=200	kPa (SLS)
Proposed Iulam Column	Level	b (mm)	d (mm)	Pry (kN)	Pf (kN)	UR (Pf/Pr)		Footing	Footing b1 (mm)	Footing b2 (mm)	t (mm)	qs (kPa)	UR qs/qr
G/16	3	365	380	1600	260	0.16		G/16	2500	2500	550	127	0.64
nterior, under	2	365	380	1710	672	0.39							
roof)	Ground Floor	365	380	1692	1083	0.64							
D Column Sch	edule: C4 - 450	x 450										qr=200	kPa (SLS)
Proposed Iulam Column	Level	b (mm)	d (mm)	Pry (kN)	Pf (kN)	UR (Pf/Pr)		Footing	Footing b1 (mm)	Footing b2 (mm)	t (mm)	qs (kPa)	UR qs/qr
	3	315	342	1154	65	0.06		M/1	1500	1500	450	120	0.60
M/1 (corner)	2	315	342	1263	212	0.17							
	Ground Floor	315	342	1245	355	0.28							
CD Column Sch	edule: C4 - 450	x 450										qr=200	kPa (SLS)
Proposed Iulam Column	Level	b (mm)	d (mm)	Pry (kN)	Pf (kN)	UR (Pf/Pr)		Footing	Footing b1 (mm)	Footing b2 (mm)	t (mm)	qs (kPa)	UR qs/qr
	3	315	342	1154	130	0.11		M/3	2000	2000	450	116	0.58
M/3 (perimeter)	2	315 315	342 342	1263 1245	378 622	0.30							

В1

CLT=5-ply, 175mm

Glulam Beam Volume Comparison

6m x 12m							Original 7.5m x 7.5m					
Beam	#	B (mm)	D (mm)	L(m)	V (m3)		Beam	#	B (mm)	D (mm)	L (m)	V (m3)
GB1	181	265	608	990.2	159.5		B1	138	315	608	935.3	179.1
GB2	44	265	532	252.3	35.6		B2	262	215	494	1847.3	196.2
GB3	10	265	760	71.8	14.5		B3	11	365	874	114.7	36.6
Total	235				209.6		B4	8	215	418	29.3	2.6
							Total	419				414.5
6m x 12m	209.6											
Original	414.5											
Savings	49%											

Competitively Early on Board Mass Timber Supplier

Early on Board - key reasons

- Design optimization, fabrication and connection efficiency
- Can be achieved with minimal design information
- Design Assist Provides an opportunity for an offramp
- Focus on value and collaboration (unlocking the creativity of the team) for better outcomes
- Facilitates better design integration with MEP Trades
- Increases schedule and cost certainty
- Overall strong risk mitigation specifically on large projects

Early on Board – RFP Requirements

Architecture

- Preliminary layout and elevations (spans)
- Intended Fire Rating
- Exposure objectives including Intended coatings / finishes

Structural

- Rough sizing of mass timber components and volumes.
- No connection details necessary very limited.

• Schedule

- Projected design assist period and award date
- Mass timber delivery date

RFP Evaluation Matrix

Evaluation Matrix	
	Тор
Scoring Criteria	Score
Design Assist Cost	10
Budget Price (inc. adders and subtractors)	35
Value Engineering	35
Description of suggestions	7
Supporting information to validate suggestions:	7
Estimated cost savings	7
Estimated schedule savings	7
Milestone Schedule	7.5
Project Team	7.5
Procurement Preference	5
Total	100

Carbon Benefit

/ Project Team

ha/f

This report is supported by the Mass Timber Institute and Entuitive. The following project team was assembled by the Mass Timber Institute to undertake the study:

Mass Timber Institute:

Anne Koven, Director Robert Wright, Principal Investigator Shan Shukla, Research Coordinator

Ha/f Climate Design:

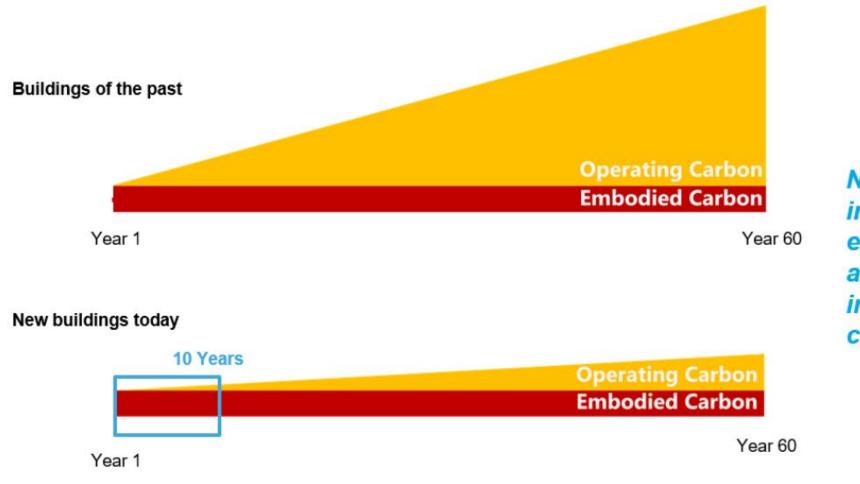
Kelly Alvarez Doran, OAA Ryan Bruer, OAA Juliette Cook Rashmi Sirkar Richard Schutte

Entuitive:

Oscar Valdes, Senior Embodied Carbon Manager Emily King, Associate, Sustainable Performance Greg Riewe, Senior Associate Hannah To, Structural Designer Karimat Okunlola, Structural Designer

Bird Construction Inc:

Darryl Vanderwoude, Manager, Preconstruction Patrick Crabbe, Director, Mass Timber Eddie Baek, Estimating Manager


Publication Date:

June 03, 2024


All rights reserved; no part of this work may be reproduced or edited using electronic systems, copied, or distributed in any form whatsoever without previous written consent from the Mass Timber Institute.

Cost and Carbon for Commercial Construction in Canada

For: The Mass Timber Institute, Daniels Faculty of Architecture, Landscape and Design, at the University of Toronto By: Ha/f Climate Design in collaboration with Entuitive and Bird Construction

New buildings are increasingly energy efficient, and energy is increasingly lower-carbon

a 12m x 9m typical column spacing with floor framing consisting of 250mm concrete slabs with 300mm drops. The floor to floor height is 4m.

The structural steel design also has a 12m x 9m typical column spacing with floor framing consisting of 114mm concrete on a 76mm metal deck.

x 9m column spacing with a typical floor framing consisting of 7-ply CLT spanning between glulam girders.

column spacing at 9m x 9m with a floor framing consisting of 5-ply CLT between glulam purlins which are picked up by beams in both directions

 The steel cost estimate was the lowest at 9% less than concrete, 8% less than all-timber, and 30% lower than hybrid timber

	Calgary (77%)	Vancouver (94%)	Toronto (100%)
Concrete	\$ 18,862,624	\$ 23,027,099	\$ 24,496,914
Steel	\$ 17,230,132	\$ 21,034,188	\$ 22,376,795
All-Timber	\$ 18,661,502	N/A	\$ 24,235,716
Hybrid Timber	\$ 22,876,673	\$ 27,927,367	\$ 29,709,965

Fig 11. Total costing results including location factors for three cities. Price is based on market pricing as

What are the embodied carbon and construction costs of a generic 12-storey office building built out of a) reinforced concrete, b) steel, c) mass timber, and d) hybrid timber structural systems?

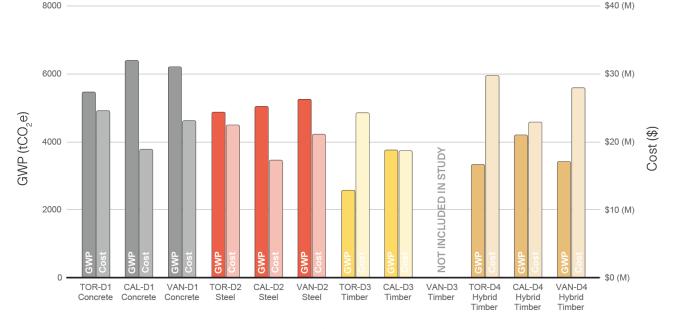
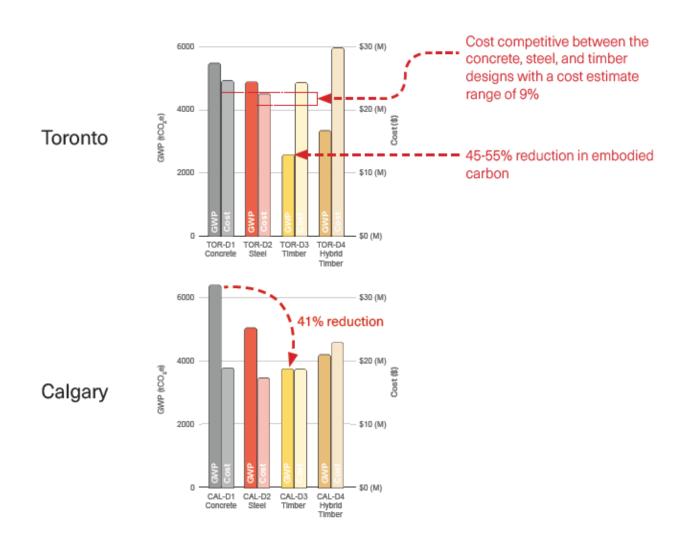
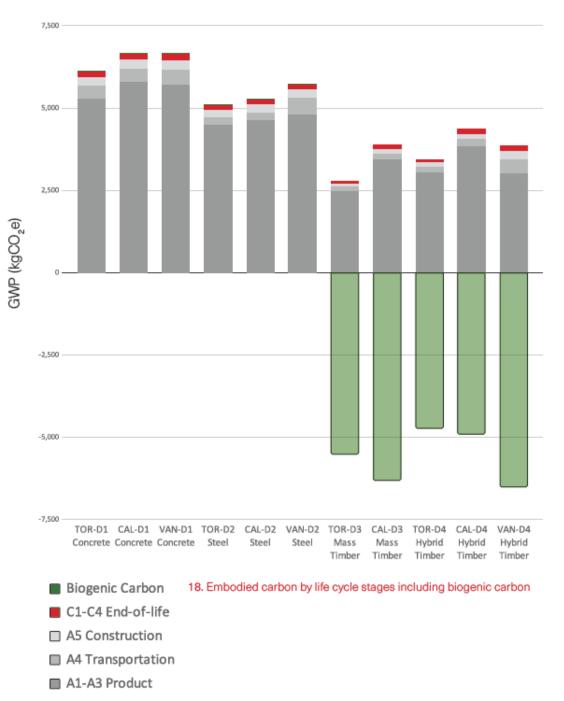




Fig 17. A-C Embodied carbon (GWP) and upfront cost of all designs

Mass Timber

Bird is a North American leader in wood construction with unmatched expertise, experience, and supply chain knowledge.

May 2025

\$1.3B

30 Completed Projects

\$932M

15 Projects Awarded / Under Construction in Canada

\$3B

Targeted Mass Timber Pursuits

Mass Timber Centre of Excellence

- PROCURMENT, DESIGN AND PRE-CONSTRUCTION EXPERTISE
- SUPPLY CHAIN AND MASS TIMBER PRODUCT SPECILIST
- INDUSTRY LEADING CoC INSURANCE
- PROPRIETARY QA/QC & EXECUTION STRATEGIES
- EMBODIED CARBON & CARBON LITERECY
- MASS TIMBER INSTALLATION TRAINING PROGRAM

