Geodesy and Geomatics Engineering
The courses presently offered in the Geomatics Engineering Program by the Department of Geodesy and Geomatics Engineering are described below.
The first digit of the identification number indicates the level of the course. A “5” indicates an elective course, normally done in the final year.
The second digit normally indicates the subject area as follows:
0 measurement, positioning and navigation
1 applied analysis
2 geodesy
3 imaging and mapping
4 information management, modeling and visualization
5 land administration
6 synthesis and design
7 technical communication, complementary studies
8 service course for other disciplines
9 general (geodesy or geomatics or both)
The third digit carries the course sequence identification integer where "0" refers to the first course, "1" to the second course, and so on.
As stated below, a course may have prerequisite courses or co-requisite courses or both. It is expected that students will have completed at least the prerequisite courses prior to doing a course in order to be adequately prepared to deal with the material of that course. Those who have not completed those courses can expect to spend additional time acquiring this background knowledge on their own and should budget more time for that course. Nonetheless, a course instructor has the right to insist that students may take her/his course only if they have met the prerequisite or co-requisite stipulations or both.
The credit hour weighting of a course is also an indication of the amount of time that may have to be spent on a course. Generally, the number of hours per week (including all scheduled class time) could be from 2 to 3 times the number of credit hours. As an example, a course is shown as being “(2C, 3L) 4 ch”. This means that a student might spend up to 8 to 12 hours per week, including the scheduled 5 hours of lectures (C) and lab (L). Students who have not completed the prerequisites can expect to spend more time than this.
For list of core courses and technical elective courses, see Section G in the program description.
NOTE: See the beginning of Section H for abbreviations, course numbers and coding.
GGE1001 | Introduction to Geodesy and Geomatics | 5 ch (3C 3L) |
---|---|---|
GGE2012 | Advanced Surveying | 4 ch (2C 3L) |
---|---|---|
Barometric and trigonometric heighting. Precise levelling. Mechanical distance measurements. Electronic angle and distance measurement, total stations, and reflectorless EDM. Coordinate transformations and positioning by trigonometric sections. Route and construction surveys. Geodetic control surveys: from triangulation to GPS. Digital terrain models. Contouring. Practical use of GPS. Introduction to the design of surveys and specifications. Related issues of occupational health and safety. |
GGE2013 | Advanced Surveying Practicum | 4 ch |
---|---|---|
Two weeks of practical exercises following spring examinations. Management of occupational health safety issues. |
GGE2413 | Mapping Concepts and Technology | 5 ch (3C 3L) |
---|---|---|
Introduction to computer-based systems and processes for creating, managing, analyzing and visualizing spatial information. Introduction to geographic information systems (GIS), spatial data structures and 2-dimensional spatial transformations. Comparative overview of alternative spatial data collection technologies. Systems-based approaches to desktop mapping, cartographic production and map analysis. Basic properties and applications of common map projections. Prerequisites: CS 1003 or CS 1073, MATH 1503 or equivalent introduction to matrices and systems of linear equations. |
GGE2501 | Land Administration | 4 ch (3C 2L) [W] |
---|---|---|
Introduction to basic priniciples and current issues in land administration from Canadian and international perspectives. Covers views of land tenure, land management, land information, management, reform of cadastral systems, and coastal zone management. Includes practical exercises reinforcing course topics while building communications and analytical skills. |
GGE3022 | Survey Design and Analysis | 5 ch (3C 3L) |
---|---|---|
Develop a deep understanding of surveying observations and their errors and apply it in design of control surveys that efficiently meet client requirements. Students learn operational principles of instruments, behavior and mitigation of observation errors, interpretation of specifications for surveys, and design and analysis of control surveys. Angle, azimuth, distance, and height difference observables are covered. Issues of occupational health and safety in survey design will also be addressed. Co-requisite: GGE 4211 |
GGE3023 | Surveying Design Practicum | 4 ch |
---|---|---|
Apply principles of survey design and analysis to a control survey involving total station, differential levelling, and GNSS observations. Students undertake two weeks of practical exercises in survey planning, execution, and analysis following spring examinations. Management of occupational health and safety is discussed and applied in field operations. Prerequisite: GGE 3022. |
GGE3042 | Introduction to Global Navigation Satellite Systems | 5 ch (3C 3L) |
---|---|---|
Principles of space geodesy. The celestial sphere, its coordinate systems, and variations in coordinate systems. Time keeping. Satellite based positioning systems, especially the Navstar Global Positioning System (GPS) including observations, development of mathematical models, static and dynamic positioning, error analysis, software structure, and processing considerations. Real Time Kinematic (RTK) GNSS positioning. Prerequisite: MATH 1503. Co-requisite: MATH 2513. |
GGE3111 | Introduction to Adjustment Calculus | 5 ch (3C 3L) |
---|---|---|
Calculus of variations; quadratic forms; least-squares principles; least-squares method, weight matrix, variance factor; parametric, condition and combined adjustment. |
GGE3122 | Advanced Adjustment Calculus | 4 ch (3C 2L) |
---|---|---|
Quality control, uni- and multivariate statistical testing; approximation, prediction, filtering in observation and frequency domains; constraint functions; weighted parameters; nuisance parameters; sequential adjustment; Kalman filtering. Co-requisite: CS 3113. |
GGE3202 | Geodesy I | 4 ch (2C 3L) |
---|---|---|
Learn introductory geodesy. This course covers institutional organization of geodesy; history of geodesy; motions of the Earth; tools to measure the motions of the Earth; measurement and theory of the Earth’s gravity field; the geoid, ellipsoids, and datums; geodetic control in Canada; and reducing the impact of natural hazards on the Earth. |
GGE3342 | Remote Sensing | 5 ch (3C 3L) |
---|---|---|
Overview and physical basis of remote sensing. Space- and air-borne sensor systems, active and passive sensors. Fundamental geometry of photogrammetry. Image statistics. Rectification of digital imagery. Image enhancement, spectral and spatial filtering. Multi-spectral transformations. Thematic information extraction, classification and accuracy assessment, change detection. Credit will be given for only one of GGE 3342 or GGE 5342. Prerequisite: GGE 2423 or GGE 3423 or permission of instructor. |
GGE3353 | Ocean Mapping | 5 ch (3C 3L) |
---|---|---|
Introduction to hydrography: geomatics aspects, trends and prospects, role in offshore management. Depth determination: seabed and seawater properties, non-acoustic methods, underwater acoustics, vertical and oblique incidence methods, bathymetric and imaging methods. |
GGE3423 | Introduction to Geographic Information Systems | 4 ch (2C 3L) |
---|---|---|
Introduction to GIS technology; Application of GIS; understanding the nature of geographic data, from geographic data to geographic information (GI), Information Systems (IS), and GIS; earth size and shape; tracing and mapping entitles on the earth; geographic data sources and collection methodologies; evaluating the quality of the data sources; representing geographic data in the GIS; loading and managing geographic data in the GIS; analyzing geographic data, solving geographic related problems using GIS, mapping the results of that analysis using GIS, and publishing the results of the analysis on the web. Program credit cannot be given for both GGE 3423 and GGE 2423. Prerequisite: MATH 1503 or equivalent introduction to matrices and systems of linear equations; or permission of the instructor. |
GGE4022 | Precision Surveying | 4 ch (2C 3L) |
---|---|---|
Measurements, processing, and analysis in densification surveys. Control surveys for photogrammetry and construction. Introduction to mining and tunnelling surveys, deformation measurements and analysis, and industrial metrology. Related issues of occupational health and safety and their management. |
GGE4211 | Geodesy II | 4 ch (3C 2L) |
---|---|---|
Terrestrial, celestial and orbital coordinate systems; coordinate transformations; positioning in 3 dimensions, on the ellipsoid and on a conformal mapping plane. Height systems. Temporality of geodetic parameters. Earth observation systems. Prerequisite: GGE 3202. |
GGE4313 | Photogrammetry | 5 ch (3C 3L) |
---|---|---|
Photogrammetric principles, systems, sensors, and products. Geometry of vertical, tilted and stereoscopic aerial photographs. Fundamental photo and model space coordinate systems. Photogrammetric measurement and refinement. Direct and inverse coordinate transformations. Collinearity and coplanarity conditions, direct linear transformation and rational function models. Interior and exterior orientations. Concepts of aero-triangulation. Principles of images matching and epipolar geometry, DEM generation and orthorectification. Close range and UAV photogrammetry, Flight project planning. Principles and characteristics of airborne LiDAR systems. |
GGE4423 | Advanced Geographic Information Systems | 5 ch (3C 3L) |
---|---|---|
Mapping concepts and Geographic Data Management and Analysis: (a)Mapping concepts: cartographic generalization and multiple representation, representation of the terrain (DEM/DTM/DSM/nDSM/Point Clouds/3D city models), interpolations methods, map design and interactive visualization; (b) Geographic Data Management and Analysis: database design theory, conceptual models (entity relationship model, UML), logical models (relational, object and object relational model), physical models, spatial index structures, algorithms for analysis of geographic data, graph theory, introduction to XML and XML-based languages for GIS, spatio-temporal modelling in GIS. Prerequisites: GGE 2423 or GGE 3423 or permission of the instructor. |
GGE4512 | Land Administration II | 3 ch (2C 1L)[W] |
---|---|---|
Introduction to modern issues in land tenure and administration from Canadian and international perspectives. Includes boundary disputes and uncertainties, aboriginal rights, land information management, reform of cadastral systems, coastal zone management, law of the sea, and delimitation of maritime boundaries. Prerequisite: GGE 2501 or permission of instructor. |
GGE4513 | Survey Law I | 4 ch (3C 2*L) [W] |
---|---|---|
Prerequisite: GGE 2501. |
GGE4700 | Design Project and Report | 6 ch (2C 2L) |
---|---|---|
A full year course (fall term then winter term) involving the design and implementation of a geomatics activity or project and a reporting on the results or outcome, all under the direct supervision of a faculty member or equivalent in industry. Lecture topics include: engineering economics and business management issues specific to geomatics; financial decision making in geomatics. Must be done in the student’s final year of the programme. |
GGE5011 | Oceanography, Tides, and Water Levels | 4 ch (3C 1L) |
---|---|---|
Descriptive and theoretical introduction to physical oceanography, focusing on the coastal zone and the continental shelf. Components of physical oceanography that affect the accuracy and operational conduct of hydrographic surveying. Detailed studies of the controls on sound speed structure (seawater properties, propagation and refraction). Detailed studies of the controls on surface water level (tides, waves and swell, vertical reference surfaces). Constituent extraction from tidal observations and prediction of tides. Discrete and continuous tidal zoning, including an introduction to coastal hydrodynamic models. |
GGE5012 | Marine Geology and Geophysics | 4 ch (3C 1L) |
---|---|---|
Descriptive marine geology including all ocean depths, but focusing on the coastal zone and continental shelf. Components of surficial sedimentology that affect the accuracy and operational conduct of hydrographic surveying. Detailed studies of the controls on seafloor processes (deposition and erosion) and bottom backscatter strength (sonar performance, geomorphology, sediment classification). Descriptive and introductory-theoretical marine geophysics including single-channel, 2D multi-channel and 3D multi channel reflection seismic surveying. Marine refraction seismology. |
GGE5022 | Precision Surveying | 4 ch (2C 3L) |
---|---|---|
Develop skills in design, execution, and analysis of diverse control and monitoring survey types. Students explore specifications for common types of survey, and later study specialized requirements and techniques for surveys in areas of limited extent, underground surveys, and surveys for monitoring movement over time. Unique health and safety considerations associated with these survey types are discussed. |
GGE5042 | Kinematic Positioning | 4 ch (3C 2L) |
---|---|---|
Performance requirements, mathematical models, observation methods, processing strategies, uncertainties and other characteristics associated with moving marine, land airborne, and space vehicle positioning, orientation and attitude applications, using autonomous, terrestrial, satellite, and acoustic methods. |
GGE5222 | Gravity Field in Geomatics | 4 ch (2C 3L) |
---|---|---|
Build an in depth understanding of Earth's gravity field and its application to various aspects of Geomatics. Students learn the theory of Earth's gravity field and its temporal variations. Space, airborne and terrestrial observational methods associated with absolute, relative, network, and moving-base gravimetry are covered, as well as errors in these techniques. Mathematical models, gravity field parameter transformations, and a selection of applications (e.g., geoid determination, height systems, mass transfer) are also covered. |
GGE5242 | Global Navigation Satellite Systems for Geodesy | 4 ch (3C 3*L) |
---|---|---|
Review of coordinate systems. Orbital dynamics. GPS for high precision positioning and navigation. Major practical lab in GPS positioning.. |
GGE5322 | Digital Image Processing | 4 ch (3C 3*L) |
---|---|---|
Image data formats; software code for input and output images; writing, compiling and running software code; advanced image processing and computer vision algorithms and software programming; includes advanced edge detection, mathematical morphology, image segmentation, texture, skeletonization, image restoration, wavelets, image matching, fuzzy logic. Prerequisites: GGE 3342 and experience in programming, preferably in C/C++. |
GGE5341 | Advanced Technologies in Remote Sensing | 4 ch (3C 2L) |
---|---|---|
An introduction to the concept and basic theory of Artificial Neural Network (ANN), Wavelet Transformation (WT), and Fuzzy Logic (FL); literature review of remote sensing applications or other applications which used one the three modern technologies; and seminar presentations on the applications and techniques learned from literature. |
GGE5401 | Geospatial Development | 3 ch (2C 2L) |
---|---|---|
Programming skills required in the geospatial industry. Development of standalone programs, use of geospatial libraries, and extension of the functionality of geomatics software systems. Prerequisites: CS 1003 and GGE 3423 or permission of the instructor. |
GGE5402 | Geographic Databases | 3 ch (2C 2L) |
---|---|---|
This course focuses on both the theoretical and practical issues related to the development of geographic databases and the extraction of knowledge from geographic data collections. Special attention will be given to recent technological developments and research directions. A series of Lab Sessions will run in parallel, using commercial and open source s/w tools, such as PostgreSQL/PostGIS DBMS, Oracle Spatial DBMS, MongoDB, Protégé, Quantum GIS s/w, WEKA Data Mining s/w, and other prototype s/w packages. Prerequisite: GGE 4423 or permission of the instructor. |
GGE5403 | Web Mapping and Geospatial Web Services | 3 ch (2C 2L) |
---|---|---|
This course focuses on both the theoretical and practical issues related to the dissemination of mappling/geographic content on the web and the development of map mashups and geospatial web services. Students will learn how to design and implement web mapping applications and geospatial web services using free software tools. Prerequisite: GGE 3423 (Introduction to GIS) or equivalent or permission of the instructor. |
GGE5405 | Introduction to Big Data & Data Science | 3 ch (2C 2L) (LE) |
---|---|---|
Offers an overview of key techniques and technologies in big data analytics, and how data science is different from related fields. Through a combination of lectures and hands on exercises using R, MongoDB, and D3 visualization tools, students will learn to explore, clean, refine, analyze and visualize geospatial, streaming, unstructured and structured types of big data. |
GGE5410 | 3D Geographical Information Systems | 4 ch (2C 3L) |
---|---|---|
Prerequisites: GGE 4423 and GGE 4313 |
GGE5415 | Real-Time Mobility Data Analytics | 3 ch (2C 2L) (LE) |
---|---|---|
Focuses on teaching the principles, methods and tools of descriptive analytics (mapping what is moving), diagnostic analytics (mapping why something is moving), predictive analytics (mapping what will move), and prescriptive analytics (mapping how we can make it move). Explores real-world case studies through lectures and hands on exercises to allow students to replicate the analytics when facing similar data. Prerequisite: GGE 5405. |
GGE5521 | Survey Law | 4 ch (3C 3*L) |
---|---|---|
Review of common and statute law affecting property, boundaries, and surveys. Role of a land surveyor in resolving boundary disputes and as an expert witness. Various types of legal surveys. Professional responsibilities, ethics. Case studies. Prerequisites: GGE 2501, GGE 3022, GGE 3023, GGE 3122, GGE 4211, GGE 4512. |
GGE5522 | Survey Law II | 4 ch (3C 2*L) [W] |
---|---|---|
Prerequisites: GGE 4512 or GGE 4513. |
GGE5833 | Land Use Planning for Geomatics | 4 ch (3C 3L) [W] |
---|---|---|
Introduction to urban and site planning and related environmental management issues. The evolution of cities, community planning and municipal administration, principles of land use, and the administration and enforcement of planning regulations. In the context of geomatics: site analysis and the physical, social, and environmental impacts of development on a site and its surroundings. The economics of land development. Co-requisites: GGE 4512 or 4513, and GGE 5521 or 5522, or permission of the instructor. |
GGE5901 | Special Studies in Geomatics I | 1 ch (1T 1L) |
---|---|---|
Directed study in an approved topic in geomatics. Supervision by a faculty member. Normally done in a student’s final term. Credit will be given for only one of GGE 5901, GGE 5902, or GGE 5903. |
GGE5902 | Special Studies in Geomatics II | 2 ch (1T 3L) |
---|---|---|
Directed study in an approved topic in geomatics. Supervision by a faculty member. Normally done in a student’s final term. Credit will be given for only one of GGE 5901, GGE 5902, or GGE 5903. |
GGE5903 | Special Studies in Geomatics III | 3 ch (1T 5L) |
---|---|---|
Directed study in an approved topic in geomatics. Supervision by a faculty member. Normally done in a student’s final term. Credit will be given for only one of GGE 5901, GGE 5902, or GGE 5903. |